
Ecological Indicators 121 (2021) 107184

Available online 28 November 2020
1470-160X/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Using sentinel-2 satellite imagery to develop microphytobenthos-based 
water quality indices in estuaries 

Simon Oiry , Laurent Barillé * 
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A B S T R A C T   

Microphytobenthos (MPB) is composed of unicellular photosynthetic organisms that colonize intertidal sedi-
ments within the first millimeters of the photic zone and form biofilms at low tide. In estuaries, this benthic 
group can represent the main primary producer and deliver several ecosystem services. However, it is not 
currently used as a bioindicator of water quality, contrary to the widespread use of phytobenthos in freshwater 
settings. This study assesses the potential of developing MBP metrics to assess water quality in transitional waters 
using Sentinel-2 (S2) satellite imagery. A Random Forest machine learning classification was used to distinguish 
different types of intertidal vegetation in 26 French estuaries and bays, in particular MPB and green macroalgae 
(chlorophytes), using multispectral indices. High accuracy was generally achieved for the identification of MPB 
when compared with field validation data, for both User’s and Producer’s accuracies, which corresponded to 
94% and 84% respectively. Two Earth observation variables were retrieved: the Normalized Difference Vege-
tation Index (NDVI), a proxy of MPB biomass, and MPB percent cover integrated over the entire intertidal area of 
the water body. From a total of 918 S2 images from over a full year, 28% were exploitable due to the combined 
requirements of cloud-free pixels collected during low tide. With its 10 m spatial resolution, S2 was able to map 
all estuaries. MPB percent cover showed a stronger gradient between estuaries than MPB NDVI. MPB percent 
cover was also significantly correlated with green macroalgae percent cover, and a group of estuaries charac-
terized by the highest MPB and green macroalgae coverage corresponded to eutrophic sites impacted by 
intensive farming activities. A multivariate analysis confirmed that MPB percent cover was indeed related to 
nutrients. It was also related to sediment type which was one of the main factors underlying differences between 
estuaries. This work is a first step toward a water quality metric using MPB, and several recommendations are 
proposed to refine this approach. Sentinel-2 imagery, which is publicly available, presents an interesting 
compromise to map estuarine microphytobenthos in order to assess the ecological status of transitional waters.   

1. Introduction 

Estuaries are among the most productive aquatic ecosystems and 
provide numerous services, including nutrient cycling, nurseries for 
commercial species, shoreline stabilization, protection from floods, and 
buffering against sea-level rise (Barbier et al., 2011; McLusky and Elliott, 
2004). However, as coastal areas, they are heavily used and threatened 
by intense anthropogenic pressures, and affected by multiple drivers 
(Halpern et al., 2008; Merrifield et al., 2011). In Europe, the Water 
Framework Directive (WFD) establishes a framework for the protection 
of coastal and transitional waters (estuaries and lagoons) (European 
Commission, 2000). The ecological status of water bodies is based on 
hydromorphological, physico-chemical, and biological elements (Borja 

et al., 2013). Biological water quality metrics are based on the presence 
and abundance of fish, macroinvertebrates, macroalgae, seagrass, and 
phytoplankton. Phytoplankton is the most reported indicator in lakes 
and coastal waters, but for 57% of transitional waters, it’s status is 
“unknown” (European Environment Agency, 2018). In turbid estuaries, 
phytoplankton metrics developed for coastal areas are not applicable. 
Light attenuation by suspended particulate matter limits phytoplank-
tonic production (Cloern, 1987) despite high nutrient concentration 
(Monbet, 1992). There is, however, another group of ubiquitous uni-
cellular primary producers that contributes significantly to estuarine 
productivity: intertidal microphytobenthos (MPB); (Consalvey et al., 
2004; Frankenbach et al., 2020; Underwood and Kromkamp, 1999). 
Intertidal MPB refers to unicellular microalgae and cyanobacteria 
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colonizing superficial sediments. Diatoms are usually the dominant 
microalgal component of MPB communities in intertidal estuarine and 
coastal areas (MacIntyre et al., 1996). 

MPB is not used by the WFD as a biological indicator (Brito et al., 
2010), and its potential as a biological quality indicator has been 
underinvestigated (Trobajo and Sullivan, 2010). In fact, the Directive 
only recognizes phytobenthos (benthic algae) in reference to freshwater 
organisms (Kelly, 2013). Many freshwater quality indices are based on 
diatom taxonomic composition (Prygiel and Coste, 1993), but there are 
no such indices for microphytobenthos. MPB is notoriously difficult to 
extract from the sediment and challenging to identify at a high taxo-
nomic resolution (Ribeiro et al., 2020). On the other hand, MBP can 
grow biofilms covering several hectares of estuarine tidal flats 
(Benyoucef et al., 2014). These macroscale structures can be observed 
using satellite remote-sensing and quantified in terms of areal extent and 
biomass (Brito et al., 2013; Daggers et al., 2020; van der Wal et al., 
2010). Most studies have used the Normalized Difference Vegetation 
Index (NDVI), which combines information at the red and near-infrared 
wavelengths (Tucker, 1979), as a proxy for benthic chlorophyll-a con-
centration (Barillé et al., 2011). Satellite imagery can, therefore, be a 
valuable tool to monitor estuarine water quality (Fichot et al., 2016; 
Mantas et al., 2013), but depends strongly on the spatial, temporal, and 
spectral resolutions (Muller-Karger et al., 2018). The MultiSpectral In-
strument (MSI) aboard the European Space Agency Sentinel-2 (S2) sat-
ellite has a high 10 and 20 m spatial resolution that should allow 
estuaries to be mapped for satellite-derived water quality assessment 
(Schaeffer and Myer, 2020). With a constellation of twin satellites (S2A 
and S2B), the S2 mission also offers a high temporal resolution, with a 
revisit time of 5 days. The main constraint to discriminating MPB from 

other intertidal vegetation is the limited number of spectral bands in the 
visible and the near-infrared range of S2 MSI (Drusch et al., 2012). With 
a multispectral NDVI, MPB may be confused with sparse macroalgae or 
seagrass (Barillé et al., 2010; Méléder et al., 2003a,b). The problem may, 
however, be overcome using machine learning classification techniques 
that have been successfully used to produce global maps of tidal flats 
(Murray et al., 2019) and to identify benthic vegetation using multi-
spectral sensors (Traganos and Reinartz, 2018a,b). To our knowledge, 
machine learning classifiers, such as Support Vector Machine, k-Nearest 
Neighbor, and Random Forest (Zhang, 2015), have not yet been tested to 
discriminate MPB from other types of benthic vegetation. 

In this study, we first want to test the suitability of S2 MSI imagery 
for mapping the distribution of microphytobenthos in French estuaries. 
We hypothesize that 1) the S2 spatial resolution is suited to mapping 
smaller estuaries with riverine morphology, and 2) the S2 spectral res-
olution allows MPB to be discriminated from macrophytes colonizing 
the intertidal zone. Physico-chemical data were collected to describe 
each estuary and we used Multidimensional Scaling (MDS) multivariate 
analysis to identify groups sharing common characteristics. Relation-
ships between MPB and these environmental data were further explored 
with a redundancy analysis. Particular attention was paid to the sedi-
ment type, which is known to play a significant role in MPB distribution 
(Paterson and Hagerthey, 2001). Our main objective and the novelty of 
this work lies in the development of an estuarine water quality bio-
indicator using intertidal surfaces colonized by MPB in twenty six con-
trasted sites. The strengths and limitations of S2 to derive MPB remotely- 
sensed metrics are discussed. 

Fig. 1. Locations of the 26 study sites along the French coasts. Estuaries located in Brittany are detailed in the inset. Abbreviations are detailed in Table 1. All sites 
are Transitional Water Bodies according to the European Water Framework Directive. 
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2. Materials & methods 

2.1. Study site 

All study sites are estuaries (23) and bays (3) located along the 
French Atlantic coast and the English Channel (Fig. 1). They were 
categorized as belonging to either the Channel (CHA), Brittany (BRI), or 
to the southern part of the Bay of Biscay Atlantic coast (ATL). Estuaries 
in Brittany are generally smaller and are characterized by higher con-
centrations of nutrients originating from farming activities (Fig. 2, 
Ménesguen et al., 2018). Their catchment areas are dominated by 
agriculture, including significant livestock production. All sites have an 
intertidal zone with various tidal ranges and have been identified as 
Transitional Water Bodies (TWBs) by the French Biodiversity Agency in 
charge of implementing the European WFD (European Commission, 
2000). Waterbody masks generated by this national agency were used to 
identify each TWB. In estuaries, they cover the oligo-, meso-, and poly- 
haline sections, which were considered together in this study. In some 
cases, such as Mont-Saint-Michel Bay, the TWB mask does not include 
the whole bay, but is instead restricted to the area below fluvial influ-
ence. The main characteristics of each site are provided in Table 1. 
Although there are 43 TWBs in France, we only considered those for 
which environmental data were available, notably sediment type. 

2.2. Satellite data 

A total of 918 Sentinel-2 images from January 1st to December 31st 
2018 were downloaded from the Copernicus website (https://scihub. 
copernicus.eu/dhus/#/home). To download several images automati-
cally, an R script was developed, using the 16EAGLE/GetSpatialData R 
package. Ortho-rectified, geo-located, and radiometrically calibrated 
Level-2A data were used. Images were distributed as bottom-of- 
atmosphere reflectance with atmospheric correction performed using 
Sen2Cor (Main-Knorn et al., 2017). In a concurrent study carried out in 
Bourgneuf Bay (France) (Zoffoli et al., 2020), the performance of ESA’s 
standard atmospheric correction was tested and found to be satisfactory 
for the study of intertidal vegetation. The dataset combined images from 
the two S2 satellites with different orbital cycles (#137 and #94), 
allowing a revisit time of 3–5 days. A preliminary selection was applied 
to all images with a relaxed constraint of less than 80% of cloud cover for 
the entire S2 tile. A subsequent selection considered clouds over the 
intertidal areas and low tide conditions (see Section 2.4). Four 10 m 
spatial resolution bands from the MSI sensor were used to calculate the 
multispectral indices: B2 (490 nm), B3 (560 nm), B4 (665 nm), and B8 
(842 nm), as well as six bands with a 20 m spatial resolution; four in the 
near infrared (NIR), B5 (705 nm), B6 (740 m), B7 (783 nm), and B8a 
(865 nm), and two in the shortwave infrared (SWIR), B11 (1610 nm) and 
B12 (2190 nm). All 20 m-resolution bands were resampled to 10 m using 

the Raster package of R. 

2.3. Random forest classification 

One challenge of this study was to distinguish between different 
types of intertidal vegetation, in particular microphytobenthos from 
green macroalgae (chlorophytes), using multispectral indices. The other 
groups of plants that can be encountered in estuarine intertidal zones are 
brown macroalgae (pheophytes) and angiosperms. The main intertidal 
angiosperm is the seagrass, Zostera noltei. Terrestrial angiosperms from 
the schorre (uppermost intertidal level) can also be observed in the 
upper part of the intertidal zone. Although stranded red macroalgae 
(rhodophytes) can be observed locally, these were not considered in this 
study. Epiphytes colonizing macrophytes were also not considered, but 
do not interfere with the spectral discrimination between species (Fyfe, 
2003). We therefore selected Random Forest (RF), a machine learning 
classification combining decision trees and bootstrapping (Breiman, 
2001), which has successfully been used for tidal flats (Murray et al., 
2019) and benthic vegetation (Traganos and Reinartz, 2018a,b). 
Applied to subtidal and intertidal seagrass, coral reefs, or coastal 
meadows, it was found to perform better than simpler classification al-
gorithms and produced at least equivalent results to other machine 
learning classifiers, such as Support Vector Machine or k-Nearest 
Neighbor (Traganos and Reinartz, 2018ab; Villoslada et al., 2020; 
Zhang, 2015). Random Forest uses supervised classification algorithms, 
which allows collinearity and non-linearity between predictive variables 
to be handled. Each decision tree is created using a random sample of 
predictive data, resampled at each iteration of the algorithm. Then, for 
each pixel, the final classification is obtained by a majority vote (the 
final class of a pixel is the class which appeared most often at the end of 
each algorithm iteration). This classification method can be divided into 
three steps: model building, image classification, and accuracy assess-
ment (Fig. 3). 

2.4. RF model building 

Prior to classification, training was implemented using field mea-
surements taken at low tide in May 2019, in the Penzé and Morlaix es-
tuaries (Brittany) and in Bourgneuf Bay, south of the Loire estuary 
(Atlantic). Areas corresponding to the main types of benthic vegetation 
and substrates were delineated using a Garmin 60S GPS (Garmin 
Cooperation, Lenexa, Kansas, USA) with a spatial resolution of 3 m to 
create regions of interest (ROIs). In total, eight classes were created: 
sand, mud, water, brown algae, green algae, microphytobenthos, an-
giosperms from the schorre (uppermost intertidal level), and marine 
angiosperms (seagrass). A total of 113 polygons were randomly delin-
eated in the field, with each polygon covering a minimum surface of six 
20 m S2 pixels (Supplementary S3). An area-proportional allocation of 
training samples per class was carried out (Colditz, 2015). Reflectance 
data for all classes were obtained from quasi-synchronous S2 images. 
The RF model was created using the Caret package of R (Kuhn, 2008). 
Two parameters need to be set up: the number of trees (ntree) and the 
number of variables to be selected and tested for the best split when 
growing the trees (mtry). The number of trees was set to 500 (Belgiu and 
Drăgu, 2016). A range from 250 to 1000 trees was tested in a previous 
step and showed that classification accuracy did not improve beyond 
500. All 10 and 20 m (spatially resampled at 10 m) S2 bands mentioned 
previously were used as predictors. The other predictors were two 
multispectral indices used by Murray et al. (2019) for tidal flats: the 
NDVI and the Normalized Different Water Index (NDWI), and two 
additional vegetation indices, the Atmospherically Resistant Vegetation 
Index (ARVI) and the Modified Chlorophyll Absorption Ratio Index 
(MCARI) (Daughtry et al., 2000; Kaufman and Tanré, 1992; McFeeters, 
1996; Rouse et al., 1973). Other indices, such as the Soil Adjusted 
Vegetation Index (SAVI) and the Enhanced Vegetation Index (EVI) have 
also been tested but were not implemented in the final model because 

Fig. 2. Intertidal area (km2) of the 26 study sites distributed along the three 
main coastal zones: the English Channel, Brittany, and the southern part of the 
French Atlantic coast. Abbreviations are detailed Table 1. For each site, the area 
corresponds to the Transitional Water Body perimeter defined by the French 
Agency of Biodiversity. 
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they did not improve the classification accuracy (Huete, 1988; Liu and 
Huete, 1995). Predictive variables were selected using Principal 
Component Analysis (PCA), which helped to reduce processing time 
(Zhang and Suganthan, 2014). The mtry parameter was set to 4, as mtry =

√p (Belgiu and Drăgu, 2016), where p is the number of predictor vari-
ables; 14 in our case (ten S2 bands plus four multispectral indices). 

2.5. RF classification accuracy assessment 

The intertidal vegetation of the 26 French estuaries and bays was 
classified using the RF classifier described above. To assess the accuracy 

of these classifications, an additional field campaign, synchronous with 
an S2 image acquisition, was conducted in June 2019. Vegetation pre-
sent in the intertidal zone of Bourgneuf Bay was delineated to create a 
validation dataset of 66 polygons (Supplementary S3). The data con-
sisted of the area (m2) and position (latitude-longitude) of each type of 
vegetation. A standard remote sensing error matrix was obtained 
(Congalton, 1991), and the kappa coefficient was calculated. Each cell of 
this matrix represents the number of classified pixels, where rows are the 
RF classified training data, and columns are validation data for the 
classification assessment. The intersection of rows and columns with the 
same name represents well-classified pixels. The overall accuracy of the 

Table 1 
Description of estuaries and bays identified as Transitional Water Bodies (TWB) by the French Biodiversity Agency in charge of the implementation of the Water 
Framework Directive. The tidal ranges cover different regimes: meso-tidal (1), macro-tidal (2), and mega-tidal (3).  

Name Code Coordinates Intertidal area (km2) Mean tidal range (m) Mud (% cover) Number of images 

Aber Benoit ABB 48.56◦ − 4.59◦ 4.8 6.752 56 5 
Aber Wrac’h ABW 48.61◦ − 4.57◦ 6.58 6.752 98 5 
Aulne AUL 48.23◦ − 4.12◦ 11.84 6.152 100 4 
Auray AUR 47.63◦ − 2.95◦ 4.01 4.052 100 7 
Belon BEL 47.82◦ − 3.7◦ 1.77 4.152 99 15 
Bidassoa BID 43.37◦ − 1.78◦ 5.9 3.91 33 3 
Charente CHA 45.96◦ − 1.05◦ 25.37 5.22 98 4 
Elorn ELO 48.42◦ − 4.31◦ 4.59 62 100 6 
Jaudy JAU 48.77◦ − 3.23◦ 4.18 8.453 100 8 
Laïta LAI 47.85◦ − 3.53◦ 2.48 4.152 11 15 
Lay LAY 46.32◦ − 1.29◦ 9.24 52 100 20 
Leguer LEG 48.73◦ − 3.53◦ 1.61 7.852 51 7 
Loire LOI 47.29◦ − 2.1◦ 31.3 4.752 64 9 
Mont Saint Michel MON 48.62◦ − 1.49◦ 66.77 13.23 0 12 
Sèvre Niortaise NIO 46.27◦ − 1.14◦ 58.81 5.252 100 16 
Orne ORN 49.27◦ − 0.22◦ 2.76 6.72 0 17 
Penerf PEN 47.53◦ − 2.64◦ 15.37 4.72 94 7 
Penzé PEZ 48.64◦ − 3.95◦ 5.61 7.652 100 10 
Scorff SCO 47.75◦ − 3.31◦ 9.85 4.22 100 14 
Seudre SEU 45.79◦ − 1.14◦ 22.59 4.82 97 7 
Somme SOM 50.22◦ 1.58◦ 40.03 10.13 0 14 
Trieux TRI 48.77◦ − 3.11◦ 6.41 9.23 100 8 
Vannes VAN 47.63◦ − 2.76◦ 3.42 2.71 100 8 
Veys VEY 49.37◦ − 1.17◦ 13.5 5.92 0 17 
Vie VIE 46.72◦ − 1.91◦ 0.55 4.42 100 16 
Vilaine VIL 47.49◦ − 2.46◦ 12.12 1.351 98 5  

Fig. 3. Schematic representation of the workflow. L2A Sentinel-2 products are radiometrically and geometrically corrected. Sentinel-2 images are projected in UTM/ 
WGS84 zone 30N or in UTM/WGS84 zone 31N, depending on the TWB latitude. Parallelograms symbolize input and output data. Rectangles indicate R scripts and 
rhombi are decisions taken by the user. 
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model is the ratio of well-classified pixels to the sum of all pixels. The 
Producer’s accuracy of each class is the ratio of correctly classified pixels 
to the total number of validation data of the same class. Conversely, the 
User’s accuracy is the number of correctly classified pixels in one class 
divided by the number of pixels classified in the same class. For each 
class identified by the RF classifier, the average NDVI and the class 
percent cover relative to the intertidal area was obtained. For the class 
MPB, an NDVI range of 0–0.37 was used. The upper threshold corre-
sponds to the value proposed by (Méléder et al., 2003a,b) adapted for 
S2. 

2.6. Image selection 

In order to remove images with clouds over the intertidal zone, a 
cloud class was created during the RF model building process to detect 
clouds for each study site. All images with cloud cover greater than 10% 
over the intertidal zone were discarded. A second selection step was 
applied to the water level. The water level corresponding to the time of 
S2 acquisitions and the time of low tide were retrieved for each site from 
the website http://maree.info/. Low tide images were determined based 
on water height and the time difference between image acquisition and 
low tide (±2 h). Finally, 256 images were analyzed for the rest of this 
study, i.e. 28% of the initial total number, unevenly distributed between 
the sites (Table 1). 

2.7. Environmental data 

When available for all sites, environmental variables expected to 
have an effect on the microphytobenthos were extracted for each TWB 
from the Naïades database (http://www.naiades.eaufrance.fr/) of the 
French Biodiversity Agency and the Geological and Mining Research 
Bureau (BRGM). A set of physical variables (water temperature, pH, 
turbidity, oxygen, and day length) was retrieved, as well as nutrient data 
(concentrations of nitrate, ammonium, phosphate, and silicate). All data 
were measured in the water column. For each variable, the annual mean 
was calculated and averaged for the period 2015–2018. The two main 
types of intertidal sediment, mud and sand, expressed in percent cover 
for each intertidal area, were obtained from a report by the Algae 
Technology and Innovation Center (CEVA, https://www.ceva-algues. 
com/) (Le Bris et al., 2019). 

2.8. Statistical analysis 

First, ordinations based on remotely sensed intertidal vegetation 
variables (NDVI-MPB, NDVI-Green macroalgae, % cover MPB, % cover 
green macroalgae) were performed to analyze similarities between sites. 
For this analysis, the two main types of intertidal vegetation identified 
by the RF classifier were retained: microphytobenthos and green mac-
roalgae. We used the metric Multidimensional Scaling approach 
(mMDS, Clarke and Warwick, 2001) with Euclidean distance to plot 
each site in a 2D space with a low projection distortion (stress of 0.05). 
Groups statistically significant at p < 0.05 were identified through an 
analysis of similarity (ANOSIM). Bubble plots were used to highlight 
differences between groups of estuaries (Clarke and Warwick, 2001). 
This ordination analysis was performed using the PRIMER® software 
package. The groups of sites identified through mMDS were compared 
with Box and whisker plots. After checking normality with the Shapiro- 
Wilk test, a non-parametric Kruskal-Wallis followed by a posteriori 
Mann-Whitney pairwise comparisons were applied to test for statisti-
cally significant differences between groups. All univariate tests were 
performed using PAST 3.25 (Hammer et al., 2001). Relationships be-
tween environmental variables and remotely sensed data were first 
analyzed with univariate Spearman correlations (non-normality 
checked with Shapiro-Wilk). Finally, a multivariate analysis was per-
formed using the two-table coupling method of Redundancy Analysis 
(RDA) (Legendre and Legendre, 1998), using the R package, Vegan. This 

was used to elucidate MPB and green macroalgae patterns in relation to 
environmental variables and study sites. A Monte Carlo permutation test 
with 499 permutations was applied to test for statistical significance 
between environmental factors and their effects on intertidal vegetation. 
The analysis provided the significance of the eigenvalues and correla-
tions to the canonical axes. All environmental data were normalized. 

3. Results 

3.1. Main characteristics of the study sites 

The spatial distribution of French estuaries and bays analyzed in this 
study covers almost seven degrees of latitude, from the bay of Somme in 
the English Channel (50.22◦N) to the Bidassoa estuary in the southern 
part of the Atlantic coast next to the Spanish border (43.37◦N) (Fig. 1, 
Table 1). They are characterized by marked differences in their inter-
tidal areas, with bays of tens of km2 and narrow riverine estuaries, such 
as the Vie estuary with 0.55 km2. Furthermore, they are also charac-
terized by different tidal ranges, from meso- to mega-tidal (Table 1). The 
highest ranges are found in bays of the English Channel (Mont Saint- 
Michel Bay, Bay of Veys, and Bay of the Somme), with up to 10 m of 
tidal range. The majority has a macro-tidal regime with a tidal range of 
between 4 and 7 m. An important consideration for MPB is the nature of 
the sediment, which is associated with different growth forms. The sites 
are characterized by contrasting sediment types: the majority is 
composed of muddy sediment, but there are some sandy estuaries and 
bays, notably those from the English Channel (Table 1). 

3.2. RF classification and accuracy 

The RF classification was performed for each site and each date 
available per site (Table 1). For 2018, five of the sites had three to five 
usable images for each site, and nine sites had more than ten usable 
images. A representative example of the RF classification is presented for 
the Penzé estuary in Brittany (Fig. 4). In this muddy-sandy estuary, the 
RGB true color composite S2 image from June 2018 showed that the 
downstream intertidal area was dominated by green macroalgae 
(Fig. 4A). Of the eight classes, the RF classifier identified green macro-
algae as dominating the intertidal vegetation, with 44% cover, but also 
found that MPB occupied 21% of the intertidal zone, notably in the 
narrow, upstream section of the estuary (Fig. 4B). For the pixels classi-
fied as MPB, the NDVI was calculated as a proxy of MPB biomass 
(Fig. 4C). NDVI was similarly calculated for green macroalgae (not 
shown). 

On average across all study sites, the two main benthic primary 
producers present at the surface of TWB tidal flats were MPB and green 
macroalgae, covering 10.2% (s.d. = 8.6%) and 5% (s.d. = 5.5%) 
respectively. In the English Channel, MPB covered only 2.3% of the 
intertidal areas (2.1% for green macroalgae) versus 15.1% for estuaries 
in Brittany (7.8% for green macroalgae) and 7.9% for the southern part 
of the Atlantic coast (2.7% for green macroalgae). The accuracy 
assessment of the RF classification is presented in Table 2. The error 
matrix indicated that overall map accuracy was 91%, with a kappa co-
efficient of 0.84. MPB showed a Producer’s accuracy of 84% and a User’s 
accuracy of 94%. The lower Producer’s accuracy indicates that the RF 
did not detect all MBP seen in the field, with some pixels being classified 
as bare mud. This suggests an underestimation of MPB presence. It ap-
pears that MPB biomass with an NDVI of less than 0.12 (ca. 1 mg 
chlorophyll a.m− 2 estimated from Méléder et al., 2003b) cannot be 
detected by the Random Forest. For green macroalgae, the Producer’s 
accuracy was 88% and the User’s accuracy was 59%. The lower green 
macroalgae User’s accuracy was mainly due to confusion with marine 
angiosperms (slikke and schorre angiosperm). 
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3.3. Ordination of the TWBs 

Annual median NDVI and percent cover for both MPB and green 
macroalgae were calculated for each TWB (Fig. 5). There was a stronger 
gradient between estuaries in percent cover compared to NDVI. The 
Aulne estuary (AUL) had the greatest intertidal surface MPB cover 
(26%), while Mont-Saint-Michel Bay (MON) had the least (0.5%) 
(Fig. 5A). Green macroalgae percent cover was greatest in the Auray 
estuary (AUR; 13.6%) and lowest in the Sèvre Niortaise estuary (NIO; 
0.3%). Some estuaries, such as the Penzé (PEZ), showed high percent 
cover of both MPB and green macroalgae. Overall, there were significant 
differences in median percent cover of both MPB and green macroalgae 
between estuaries (Kruskal-Wallis, p < 0.05). The estuaries differing 
from each other were identified with the following ordination. Median 
NDVI for MPB ranged between 0.23 (NIO) and 0.28 (AUR), while green 
algae NDVI showed higher values, ranging from 0.42 (Vilaine, VIL) to 
0.51 (Trieux, TRI). There were significant differences in the median 
NDVI of both MPB and green macroalgae between estuaries (Kruskal- 

Wallis, p < 0.05). 
Using NDVI and percent cover of both MPB and green macroalgae, 

the 26 study sites were represented using a metric multidimensional 
scaling (mMDS) analysis, comparing their similarities based on 
Euclidian distances (Fig. 6). The mMDS showed that the TWBs were 
grouped in three significant clusters (Fig. 6A, ANOSIM; p < 0.05). These 
group could only be partially explained by geography: all sites of the 
English Channel were in group 1, mixed with estuaries from Brittany and 
the southern part of the Atlantic coast, which also constituted group 2. 
Group 3 was only composed of estuaries from Brittany. The ordination 
showed a marked gradient of colonization of the intertidal zone by the 
main benthic primary producers (Fig. 6B), ranging from low (group 1) to 
high (group 3). Group 3 had the highest percent cover of both MPB and 
green macroalgae. Estuaries with the greatest MPB coverage were es-
tuaries where the percent cover of green macroalgae was also higher. 
Conversely, estuaries with a low percent cover for one vegetation type 
also had low coverage of the other type. The Trieux estuary had a unique 
composition, characterized by a low percent cover of MPB but a high 

Fig. 4. Sentinel-2 RGB composite (A), Random Forest classification (B), and NDVI for the microphytobenthos (MPB) class (C) for the Penzé estuary. The schorre is the 
upper vegetated intertidal zone; the slikke is the lower interidal zone occupied by mudflats. The boundaries of the estuary correspond to the Transition Water Body 
(TWB) perimeter defined by the French Agency of Biodiversity. 

Table 2 
Confusion matrix of the Random Forest (RF) model. Columns are classes seen in the field and rows are the results of RF classification. The intersection between columns 
and rows are well-classified pixels. The intersection between Producer’s and User’s accuracy is the overall accuracy of the RF model. “Angiosperm refers to both slikke 
and schorre angiosperm.   

Sand Bare mud Brown macroalgae Green macroalgae Angiosperms MPB User’s accuracy 

Sand 500 6 24 0 0 3 0.94 
Bare mud 54 5735 1 4 0 233 0.95 
Brown macroalgae 1 0 567 9 23 0 0.95 
Green macroalgae 0 0 4 775 441 96 0.59 
Angiosperms 0 0 43 36 1082 0 0.93 
MPB 19 29 7 57 0 1759 0.94 
Producer’s accuracy 0.87 0.99 0.88 0.88 0.70 0.84 0.91  

S. Oiry and L. Barillé                                                                                                                                                                                                                          



Ecological Indicators 121 (2021) 107184

7

percent cover of green macroalgae. The type of intertidal sediment 
appeared to be relevant to the interpretation of the ordination, in 
particular for MPB, with group 1 mainly composed of sandy bays and 
estuaries, and group 3 associated essentially with muddy sediment 
(Fig. 6C). However, within each group, the idiosyncratic response of 
some estuaries to sediment type suggested that other variables needed to 
be considered. There was a significant difference in the median NDVI of 
MPB between the three groups (Kruskal-Wallis, P < 0.01), with group 1 
significantly lower (a posteriori Mann-Whitney pairwise, P < 0.01) 
(Fig. 7A). Differences were significant between all groups for MPB 
percent cover (Kruskal-Wallis, P < 0.01 and a posteriori Mann-Whitney 
pairwise, P < 0.01), with a marked gradient likely contributing to the 
ordination (Fig. 7B). The median MPB percent cover for group 1 was less 
than five but was more than 20 for group 3. A similar analysis was done 
for macroalgae, with significant differences between all groups for 
percent cover (Kruskal-Wallis, P < 0.01 and a posteriori Mann-Whitney 
pairwise, P < 0.01) (Fig. 7C, D). The median macroalgae percent cover 
of was less than 2% for group 1 but more than 8% for group 3. The first 
group comprised sandy estuaries, and was significantly different from 
the two others, which were strictly composed of muddy sediment 
(Fig. 7E) (Kruskal-Wallis, P < 0.01 and a posteriori Mann-Whitney 
pairwise, P < 0.01). The sandy estuaries were characterized by a 
significantly lower concentration of phosphates in the water column 
(Fig. 7F) (Kruskal-Wallis, P < 0.01 and a posteriori Mann-Whitney 

pairwise, P < 0.01). Group 3, with the highest MPB and macroalgae 
percent cover, also had a significantly higher concentration of silicates 
in the water column (Fig. 7F) (Kruskal-Wallis, P < 0.01 and a posteriori 
Mann-Whitney pairwise, P < 0.01). No statistical difference was found 
between the groups in terms of nitrate concentration (Kruskal-Wallis, P 
= 0.31), but group 1 was characterized by a lower median concentration 
(19.46 mg.L− 1 = 313 µmol.L− 1) than groups 2 (25.04 mg.L− 1 = 404 
µmol.L− 1) and 3 (21.32 mg.L− 1 = 344 µmol.L− 1). For all sites, nitrates 
represented more than 95% of the nitrogen forms. 

3.4. Relationship between MPB and environmental variables 

A preliminary univariate correlation analysis showed that MPB NDVI 
correlated positively with silicate (rs = 0.58, p < 0.001), for and 
somewhat with phosphate (rs = 0.38, p = 0.05), but correlated nega-
tively with temperature, turbidity, and pH (rs = − 0.48, rs = − 0.52, and 
rs = − 0.57 respectively, all with p < 0.001). MPB percent cover corre-
lated positively with mud (rs = 0.69, p < 0.001) and negatively with 
sand and pH (rs = − 0.64, p < 0.001 and rs = − 0.56, p < 0.01 

Fig. 5. Box and whisker plots of both green macroalgae and micro-
phytobenthos (MPB) median percent cover (A) and NDVI (B) for the 26 French 
estuaries and bays presented in Fig. 1. Boxes represent quartiles Q1 (25%), Q3 
(75%), and the median. Whiskers represent Q10 (10%) and Q90 (90%). Ab-
breviations are detailed Table 1. 

Fig. 6. Ordination of the 26 French estuaries and bays presented in Fig. 1 using 
metric Multi-Dimensional Scaling (mMDS) based on NDVI and percent cover of 
microphytobenthos (MPB) and green macroalgae. Estuaries and bays were 
grouped in three significant clusters (ANOSIM, p < 0.01) (A). Contribution of 
the percent cover of MPB and green macroalgae to the ordination (B). The size 
of bubbles are proportional to the percent cover of each vegetation type. The 
maximum % cover for the two types of vegetation is 30%. The largest bubbles 
correspond to 30%. Percent of the intertidal zone covered by sandy sediment 
(C). Abbreviations are detailed in Table 1. 
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respectively). NDVI and green macroalgae percent cover correlated 
negatively with pH (rs = − 0.43 and rs = − 0.59 respectively, both with p 
< 0.05). The green macroalgae percent cover also correlated negatively 
with turbidity (rs = − 0.50, p < 0.01). There was a strong positive cor-
relation between the percent covers of MPB and green macroalgae (rs =
0.77, p < 0.001). A redundancy analysis (RDA) was performed to 
analyze the ordination between MPB and green macroalgae, environ-
mental variables, and the study sites (Fig. 8). The RDA accounted for 
59.8% of the total variance (all canonical axis). Of this, 98% was 
explained by the two first axes. These two canonical axes were signifi-
cant (p < 0.05). Concerning variables, water temperature, sediment, and 
turbidity were significant (p < 0.05), while all others were not (p >
0.05). The first axis mainly opposes mud and nutrients to the other 
abiotic variables. The second axis opposes silicates to turbidity. This 
RDA shows that the percent cover of green algae is related to nutrients 
(nitrate, phosphate, and silicate) and oxygen. MPB percent cover is 
linked to the presence of mud, but also to nutrients. The NDVI of MPB 
and green macroalgae are more related to water temperature, pH, 

turbidity, and insolation. The RDA is coherent with the nMDS ordina-
tion. The nMDS group 3, which is exclusively composed of muddy es-
tuaries, is related to mud percent cover and is opposed to group 1, which 
includes all sandy estuaries. Geographic patterns are less discernable. 
Sandy estuaries of the eastern English Channel are clustered together. 
All other estuaries are mixed and distributed along the RDA axis 2, 
however, the majority of Brittany estuaries are associated with 
nutrients. 

4. Discussion 

4.1. Identification of MPB with a Random Forest classifier 

In this study, we identified MPB-colonizing estuaries and bays with a 
Random Forest (RF) algorithm (Breiman, 2001), a machine learning 
classifier that has only recently been applied to map tidal flats, as well as 
intertidal and subtidal vegetation (Fairley et al., 2018; Martin, 2020; 
Murray et al., 2019; Traganos and Reinartz, 2018a,b; Wang et al., 2018). 
However, to our knowledge, it has not yet been used to map intertidal 
vegetation composed of photosynthetic unicellular organisms and has 
mainly been applied to identify vascular plants. MPB is characterized by 
a significantly lower NIR reflectance compared to macroalgae and ma-
rine angiosperms (Méléder et al., 2003b), and therefore has a more 
discrete spectral fingerprint. Very often, diatoms are the dominant 
component of MBP (MacIntyre et al., 1996), with characteristic spectral 
features including the chlorophyll-c absorption band at 632 nm and a 
spectral shape at around 550 nm due to the presence of fucoxanthin 
(Méléder et al., 2003b). However, at the spectral resolution of S2, it was 
not possible to use these spectral features and to apply dedicated spec-
tral indices (Launeau et al., 2018). The main methodological challenge 
was therefore to discriminate MPB from intertidal macrophytes with 
limited spectral information. This spectral constraint was overcome by 
the RF classifier that was built using 14 predictor variables, ten S2 bands 
in the VIS, NIR, and SWIR, and four vegetation indices, NDVI, NDWI, 
ARVI, and MCARI. Other vegetation indices were tested, but were not 
retained, as they did not improve the classification accuracy, but 
increased computational time. 

The RF classification was developed to discriminate each type of 
intertidal vegetation, but was also used in the preliminary stage of image 
selection, based on cloud coverage and water height. Thick, opaque 
clouds, such as cumulus, were efficiently detected, but thin, transparent 

Fig. 7. Box and whisker plots of variables associated with the three groups of 
estuaries and bays identified in Fig. 6 using mMDS ordination. Micro-
phytobenthos (MPB) NDVI (A) and percent cover (B); green macroalgae NDVI 
(C) and percent cover (D); percentage of the intertidal zone covered by sandy 
sediment (E); and concentrations of orthophosphates and silicates in the water 
column (F). Boxes represent quartiles Q1 (25%), Q3 (75%), and the median. 
Whiskers represent Q10 (10%) and Q90 (90%). Asterisks indicate statistically 
significant differences (**: p < 0.01; *: p < 0.05, n.s. = not significant) between 
groups that do not share the same letter. 

Fig. 8. Redundancy Analysis (RDA) plot with sites (symbols), environmental 
variables (vectors and grey texts), and remotely-sensed variables (bold text). 
Sites are divided into three groups by geographical position: mid-French 
Atlantic coast (ATL); Brittany (BRI), and eastern English Channel (CHA). 
nMDS groups were created using Euclidean distances (cf Section 3.3). 
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clouds, such as cirrus, were more problematic. To avoid selecting images 
with this type of cloud over intertidal areas, we applied conservative 
thresholds, which probably reduced the number of images retained that 
could have been exploited. In total, 918 Sentinel-2 images were down-
loaded and classified for 2018. It took ca. 200 h using the Caret R 
package on a standard PC to process. Ranger is a new package developed 
for R, implementing a C++ version of the RF algorithm (Wright and 
Ziegler, 2017), providing a faster runtime and more efficient memory 
usage. The number of trees used to create the RF model was set to 500 
after testing different numbers (100, 250, 500, 1000, and 2000), as the 
same accuracy was obtained compared to higher values while limiting 
processing time (Thanh Noi and Kappas, 2017). In fact, RF accuracy is 
more sensitive to the mtry parameter, which sets the number of predic-
tive variables to be selected and tested when growing the trees (Kulkarni 
and Sinha, 2012). Increasing mtry can improve the accuracy of the final 
model, but it greatly increases the processing time, so we kept a value of 
4 (Ghosh et al., 2014). 

The accuracy of the RF classifier was estimated using field data 
collected from three distinct sites. Overall, high accuracy was achieved 
for the identification of MPB, in terms of both User’s and Producer’s 
accuracies, which were 94% and 84% respectively. The lower Pro-
ducer’s accuracy was due to confusion with bare mud, which suggests 
that the classifier did not detect the lowest MBP biomass. In fact, 13% of 
the MPB delineated in the field with a hand-held GPS was classified as 
bare mud by the RF. The classifier therefore slightly underestimated the 
detection of MPB, but when it was detected, the MPB maps were very 
accurate. Conversely, bare mud and sand observed in the field were 
correctly classified as such with high accuracy, which means that bare 
substrates were not mistaken for MPB. The question of where to set a 
detection threshold for bare backgrounds to avoid confusion with MPB is 
not trivial (Launeau et al., 2018). Bare mud or bare sand reflectance 
spectra are characterized by positive slopes between their red and NIR 
reflectance and therefore display non-null values for NDVI-like indices 
(Barillé et al., 2011). Setting empirical NDVI thresholds has been pro-
posed to avoid overestimating MPB where bare sediment is present 
(Launeau et al., 2018). 

The green macroalgae seen in the field during the validation 
campaign was correctly detected (Producer’s accuracy of 88%), but the 
RF classifier also included angiosperms in this class, leading to a lower 
User’s accuracy of 59%. The confusion between these two macrophytes 
was probably related to their similar pigmentary composition, in 
particular with respect to chlorophyll-b. To improve the mapping of 
these two intertidal macrophytes, an idea would be to test an additional 
set of texture layers as predictor variables in the machine learning 
classifier (Martin, 2020). Object-based image analysis has the potential 
to improve classification performance (Poursanidis et al., 2018), as has 
been shown for seagrass (Duffy et al., 2018; Roelfsema et al., 2014). 
Among the latest state-of-the–art methods, extreme gradient boosting 
(Xgboost) has been described as outperforming other machine-learning 
methods for very high-resolution remote sensing data (Georganos et al., 
2018a,b). However, this method needs a huge training dataset and 
corresponds to long computation times (Georganos et al., 2018b). 
LightGBM is another promising approach to classify objects using optical 
remotely-sensed data (Zhong et al., 2020), but was not compared to RF. 

The RF model accuracy could be improved by increasing the training 
and validation dataset across a higher number of sites, notably sandy 
estuaries. The size of the training data is related to the overall accuracy 
of the model (Du et al., 2015), and training data from each class should 
represent at least 0.25% of the studied area (Colditz, 2015; Thanh Noi 
and Kappas, 2017). In our case, this rule was respected for all classes, 
except for brown algae. The RF was identified as the most stable ma-
chine learning algorithm in terms of overall accuracy when the model is 
trained on multiple study sites, as we did (Vetrivel et al., 2015). The 
current RF algorithm can certainly be fine-tuned, but the present study 
already demonstrates that an off-the-shelf methodology (RF is available 
in commercial software such as ENVI©, or on the Sentinel Application 

Platform (SNAP) from the European Space Agency) can quantitatively 
assess the spatial distribution of MPB in estuaries using S2 images. Along 
with the fact that these images are provided atmospherically corrected 
via the Copernicus platform, this increases the interest of developing 
such a bioindicator for transitional waters as it reduces the processing 
complexity. This study validated the hypothesis that S2 spectral reso-
lution is suited to intertidal vegetation discimination. 

4.2. Sentinel-2 spatial and temporal resolutions for intertidal 
microphytobenthos 

One of our hypotheses was that the S2 spatial resolution is adapted to 
map small estuaries, in particular those with a riverine morphology. 
These estuaries have narrow intertidal zones parallel to the riverbed. In 
this study, all estuaries were able to be observed with a 10 m spatial 
resolution, even the Vie estuary, which has an intertidal surface of 0.55 
km2 (Table 1). When testing for even smaller estuaries (not considered 
in this study), such as the Nivelle estuary (43◦22′52′′ N, 1◦39′30′′ W), 
which has an intertidal surface of 0.13 km2 (ca. one thousand 10 m 
pixels), it was possible to run the RF and retrieve information. In fact, 
only the right bank of this estuary, which has very narrow tidal flats 
parallel to the river and represents less than three pixels, could not be 
observed. In addition to the 26 TWBs of this study, we verified that all 
French TWBs (43 in total) are mappable with S2. These findings are 
consistent with the results of Schaeffer and Myer (2020), who indicated 
that a spatial resolution of at least 15 m was necessary to map long and 
narrow riverine estuaries in the continental United States. NASA’s 
Landsat series spans more than 30 years and the Operational Land 
Imager (OLI) sensor of Landsat 8 is comparable to S2 MSI, but the spatial 
resolution in multispectral mode is 30 m (Barsi et al., 2014). Landsat was 
successfully used to map the worldwide distribution of tidal flats 
(Murray et al., 2019), but not all French estuaries can be observed at this 
resolution (Ribeiro et al., 2018). 

Sentinel-2 is a constellation, acquiring images between 11 and 12 
UTC at our study sites, with a minimum revisit time interval of five days 
(Bergsma and Almar, 2020). At European latitudes, the expected median 
cloud coverage is approximately 50% (Bergsma and Almar, 2020), and 
the high S2 revisit time compensates for missing observations due to 
cloud cover. This offers a good probability of obtaining coastal param-
eters for shallow water studies (Kutser et al., 2020), but there is an 
additional strong tidal constraint for the observation of intertidal zones. 
In this study, where all S2 images available for the year 2018 were 
downloaded, only 28% were exploitable due to the combined con-
straints of cloudiness and low tide. The frequency of images was un-
evenly distributed between estuaries, with three being under sampled 
(less than five images acquired per year), while ten had more than ten 
images per year. However, when analyzed by season, the frequency 
distribution was comparable between the three regions considered, with 
fewer images available in winter (Supplementary S1). This was not 
systematically related to the size of the estuary, although open bays were 
more frequently observed. 

These numbers must, however, be put into perspective with previous 
studies on intertidal MPB. Time-series analysis of SPOT images used only 
one image per year (Benyoucef et al., 2014; Echappé et al., 2018; 
Méléder et al., 2003b), while MPB seasonal variation was assessed with 
five images in the Tagus estuary (Brito et al., 2013). A much higher 
temporal resolution was achieved using the Moderate Resolution Im-
aging Spectroradiometer (MODIS) (Savelli et al., 2018; van der Wal 
et al., 2010), but with 250 m pixels. However, only the largest French 
estuaries can be resolved at this spatial resolution (Ribeiro et al., 2018). 
Sentinel-2 therefore significantly improved the probability of high- 
resolution multispectral observations of intertidal MPB. The time of 
acquisition, between 11 and 12 UTC, is well-adapted to all estuaries of 
the Atlantic coast and Brittany, because it coincides with low tide on the 
days of spring tides. This is when the largest tidal range occurs, with 
maximal exposure of the tidal zone around midday, which corresponds 
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to favorable conditions for photosynthetic organisms. However, this is 
not the case in the eastern English Channel, where low water levels of 
spring tides occur early in the morning or at the end of the day (Spilmont 
et al., 2006). This creates a discrepancy from the Seine estuary to the 
sites located at the Belgian border. For these estuaries, Sentinel-2 only 
captures neap tides, when less intertidal surface is exposed compared to 
low spring tides. One challenge is that, even with two orbital cycles, only 
one tidal phase can be observed in both the Atlantic (spring tides) or the 
eastern English Channel (neap tides) (Supplementary S2). The conse-
quences of mapping MPB at different phases of the fortnightly cycle 
remains to be investigated. 

4.3. MPB relationship with environmental variables 

Several abiotic (e.g., temperature, salinity, nutrients, light, pollut-
ants, wind and waves, tidal elevation, sediment type) and biotic (graz-
ing, interspecific competition) factors can explain the spatio-temporal 
distribution of estuarine MPB (Admiraal, 1984; Savelli et al., 2018), but 
causal relationships are always difficult to establish with statistical re-
lationships obtained using in situ data (Brotas et al., 1995). The high 
variability of estuarine sediment physico-chemical conditions across 
seasonal, fortnightly, and semi-diurnal tidal cycles, and the interplay 
between variables contributes to this complexity. However, the influ-
ence of environmental factors on MPB biomass and distribution gener-
ally depends on the spatial scale of observation (Murphy et al., 2008; 
Saburova et al., 1995). At the whole ecosystem macroscale (kilometric) 
of remote sensing observations, abiotic variables are expected to explain 
the main patterns (Daggers et al., 2020), while biotic variables tend to be 
related to MPB patchiness at the microscale (centimetric) (Weerman 
et al., 2011). 

In this study, both univariate and multivariate analysis has shown 
that sediment type was one of the main factors responsible for the dif-
ferences between estuaries. This result is consistent with previous 
studies (Brotas et al., 1995; Oh and Koh, 1995; Orvain et al., 2012) that 
showed that the spatial distribution of benthic microalgae at the 
macroscale was mainly related to the granulometric composition of 
sediments (Méléder et al., 2005; Paterson and Hagerthey, 2001), 
emphasizing that sediment type integrated other variables, such as 
sediment stability, deposition of organic particles, and interstitial water 
quality. In soft-bottom assemblages, MPB is divided into epipsammic 
species common in sandflats, where cells are attached to or almost 
immobile on sand grains, and free-living epipelic species that usually 
dominate mudflats (Admiraal, 1984). Muddy sediments colonized by 
epipelic growth-forms are characterized by higher MPB biomass favored 
by an accumulation of nutrients and the stability of sediment (Méléder 
et al., 2005; Paterson and Hagerthey, 2001). The higher NDVI found in 
this study for the muddy sites is consistent with previous observations of 
MBP spatio-temporal distribution in estuaries from northern Europe 
(van der Wal et al., 2010). Remote sensing data can only retrieve the 
sediment surface present in the photic layer: ca. 500 µm max for mud 
and ca. 2 mm for sand (Paterson and Hagerthey, 2001). The deeper 
sediment cannot be seen by the sensor, and the NDVI of sandflats cor-
responds at most to a ca. 2 mm depth. However, even integrated over 
such a depth, the biomass of epipsammic species remains lower than the 
biomass of epipelic species colonizing the first 500 µm of muddy sedi-
ment (Cartaxana et al., 2011; Morelle et al., 2020). Sediment type was 
therefore a strong structuring factor when comparing the 26 sites 
through multivariate analysis, and the estuaries with the largest surface 
covered by MPB were always associated with muddy sediment. How-
ever, not all muddy sites had a high MPB percent cover, which suggests 
that other variables should explain the MPB distribution in French 
estuaries. 

Interestingly, MPB percent cover was significantly correlated with 
green macroalgae percent cover. In this study, the estuaries character-
ized by the greatest green macroalgal coverage were located in Brittany. 
In this region, estuaries and coastal areas are known for the development 

of opportunistic green macroalgae in response to coastal eutrophication 
(Perrot et al., 2014). Brittany has the highest nitrate concentrations in 
estuaries due to intensive farming activities (Ménesguen et al., 2018). 
Even though significant statistical relationships were not detected, the 
trend observed in the RDA analysis suggests that estuaries covered by 
green macroalgae are, indeed, those with high nutrients concentrations. 
Airborne campaigns performed in 2018 on four muddy sites (TRI, VAN, 
PEZ, ABW), confirmed S2 observations of green macroalgae coverage 
(Ballu, 2019). For MPB, univariate correlations showed that NDVI was 
significantly related to silicate and to a lesser degree to phosphate 
concentrations. There was a significant correlation between phosphate 
and silicates for muddy sites (Rs = 0.58, P < 0.01) suggesting a possible 
sedimentary origin of these nutrients rather than fluvial inputs. In fact, 
phosphorus is adsorbed on seston and accumulates in the sediment 
(Ratmaya et al., 2018; Riaux-Gobin, 1985). 

These two nutrients were also significantly related to MPB assem-
blages on coastal mudflats of the French Atlantic coast (Du et al., 2017). 
However, the redundancy analysis did not confirm this relationship 
between NDVI and nutrients. In fact, there was much less variation in 
MPB NDVI compared to MPB percent cover (Fig. 5). In sandy estuaries, 
the MPB percent cover can be less than 3% of the whole estuary, but a 
high NDVI value can be obtained from a few pixels identified as MPB by 
the Random Forest. We therefore suggest that in the methodological 
framework of this study, MPB percent cover is more suitable than MPB 
NDVI as a bioindicator. 

We are aware that this analysis is limited, firstly because there were 
no nutrient data for the sediment (this is also true for all parameters), 
secondly, because the analysis was based on annual medians, whereas 
nutrients and other variables have a seasonal cycle, and thirdly because 
correlations may not be causal. This is probably the case of the negative 
correlation between MPB NDVI and temperature: in this study, the 
highest MPB biomass was observed in Brittany estuaries characterized 
by an annual median temperature 1 or 2 ◦C lower than the other sites. 
On the other hand, the positive correlation between MPB NDVI and 
silicates may be causal as benthic diatom growth can be limited by the 
supply of silicates for their silica frustule. Similarly, the negative cor-
relation between MPB and pH may be explained by a higher inorganic 
carbon depletion at high pH, a key component of photosynthesis (Vieira 
et al., 2016). Despite the limitations of this macroscale and annual 
approach, we observed consistent trends that merit further investiga-
tion, and the following subsection proposes suggestions for 
improvement. 

4.4. Developing a MPB bioindicator for estuaries using Earth observation 
data 

Benthic microalgae have long been used in rivers and streams to 
assess environmental conditions (Stevenson et al., 2010). Phytobenthos 
is one the Biological Quality Elements used by the WFD as a bioindicator 
of river and lake quality (Kelly, 2013). This does not exist for transitional 
waters, and Trobajo and Sullivan (2010) stressed the need to develop 
water quality indices based on benthic microalgal assemblages in estu-
aries and shallow water environments. This is not specific to Europe; the 
review of MPB research in Korean tidal flats by Park et al. (2014) does 
not mention bioindication as a relevant topic. One of the challenges of 
estuaries is the high variability of abiotic variables, which generates 
natural stressors, making it difficult to detect anthropogenic effects, the 
so-called “estuarine quality paradox” (Elliott and Quintino, 2007). In 
such dynamic environments, traditional sampling methods lead to 
another uncertainty related to the location and number of sampling 
sites, and the number of replicates (Kelly, 2013; Stevenson et al., 2010). 
Moreover, MPB is characterized by significant spatial variability at the 
microscale (Spilmont et al., 2011). Satellite observations with their 
inherently large spatial coverage can overcome these problems and 
provide metrics estimated at the macroscale. 

In this work, we retrieved two structural variables describing MPB 
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assemblages that were spatially integrated over the full water bodies. 
The first is the NDVI, a proxy of MPB biomass, which could potentially 
be an indicator of stress conditions, such as nutrients or sediment 
toxicity. The second is the MPB percent cover, which may respond to the 
same variables, but is more sensitive to hydromorphological changes at 
a larger, landscape scale. One consequence of studying MPB at a large 
spatial scale is the scale-dependence of environmental factors where 
higher-level factors (e.g., climate, geology) can be more constraining 
than lower-level ones, such as nutrients or pollutants (Stevenson, 1997). 
In this study, one of the main factors explaining the pattern of variation 
of MBP between the 26 French estuaries was sediment type. This can be 
regarded as a higher-level factor, which has partially masked the effect 
of lower-level factors, as suggested by the lack of statistical significance 
of nutrients in the redundancy analysis. This means that a single bio-
indicator cannot be applied indiscriminately to all estuaries, which must 
instead first be considered by sediment type (e.g., sandy or muddy). The 
division between the two sediment types remains to be established, 
knowing that natural intertidal sediment generally consists of a mixture 
of sediment types (Paterson and Hagerthey, 2001). 

A similar recommendation to standardize the sampling substrate has 
been proposed for freshwater benthic microalgae (Stevenson et al., 
2010). These authors also proposed that first subdividing large data sets 
may reduce covariation among environmental factors and help the 
development of more causally-related indicators. We expect all envi-
ronmental/anthropogenic data to become available for the 43 French 
TWBs, as a national database is currently being organized by the French 
Biodiversity Agency, and additional S2 data could be obtained to 
perform an analysis of sedimentary type of each estuary. A more 
ambitious outlook would be to expand this approach to other European 
estuaries identified as TWBs by the WFD. 

Despite the almost thousand S2 images processed for a single year, it 
was not possible to get a clear picture of the MPB seasonal cycle for each 
estuary. A pattern of maximum biomass peaking in early spring, fol-
lowed by a summer depression was observed for the Loire and Sèvre- 
Niortaise sites using MODIS (Oiry S. pers. comm.), but no information is 
available for the remaining sites. MPB seasonal variations observed in 
Dutch and United Kingdom estuaries and coastal sites using MODIS (van 
der Wal et al., 2010) were synchronized in disjointed ecosystems. An 
improvement of the method would be to estimate the MPB percent cover 
at peak biomass, but summer measurements could also be meaningful. 
In temperate areas, MPB biomass is generally low in the summer due to 
nutrient depletion at this time, grazing by herbivores, and thermo- and 
photoinhibition (Savelli et al., 2018). Higher biomass compared to a 
reference condition could be related to an abnormal input of nutrients or 
to lower grazing pressure due to an anthropogenic impact on grazers. 

5. Conclusion 

The 10 m spatial resolution of S2 enables the observation of all 
French TWBs for the WFD. With a machine learning classifier, it was 
possible to discriminate MPB from intertidal macrophytes (macroalgae 
and angiosperms) despite the multispectral resolution. S2 can, therefore, 
provide spatial metrics on MPB as a group of unicellular photosynthetic 
organisms at the macroscale. S2 image data is publicly available through 
ESA’s sci-hub and EU Copernicus portals, and is therefore a good 
compromise to map estuarine microphytobenthos at no cost. This 
improved spatial and temporal coverage is a strong argument for the use 
of satellite data in complement to conventional sampling for the WFD 
statutory monitoring and reporting (Papathanasopoulou et al., 2019). 
This work is a first step toward a possible satellite water quality metric 
using MPB percent cover, as a bioindicator of high nutrients loads. This 
can be particularly useful in turbid estuaries where none of the biolog-
ical water quality metrics based on phytoplankton or macroalgae can be 
applicable. This is the case for the three largest French estuaries: the 
Gironde, the Loire, and the Seine. Four recommendations can be made to 
improve the analysis: 1) to consider sandy and muddy estuaries 

separately, 2) to extract the spatial information for the poly-haline and 
mesohaline sectors of estuaries, which can have different MPB biomass 
(Benyoucef et al., 2014), 3) to retrieve MPB structural variables from the 
mid-intertidal zone to the upper shore to account for the effect of tidal 
elevation on MPB spatial distribution (Brotas et al., 1995; van der Wal 
et al., 2010) and 4) to target specific periods of the MPB seasonal cycle. 
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écosystème conchylicole. C. R. Biol. 326, 377–389. https://doi.org/10.1016/S1631- 
0691(03)00125-2. 
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